The Petite Amateur Navy Satellite (PANSAT) Hitchhiker Ejectable

STS-95 Payload Bay

Mr. Daniel Sakoda, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

STS-95 Launch

Mr. Daniel Sakoda, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

23 hours, 26 minutes later . . .

PANSAT Deployed

PANSAT Hitchhiker Ejectable

- Introduction
- Design Requirements and Issues
- PANSAT Testing
- Payload Safety
- Lessons Learned
- Conclusion

Introduction

- Hands-on space system development for officer students
- Global, digital messagerelay
- Spread spectrum modulation
- Amateur radio involvement

Introduction

- Designed and built at NPS
- 50 theses published
- Used in laboratory instruction at NPS
- Facilities installed to support spacecraft development
- Subsystem testing at NPS
- Integration and system-level testing at NASA/GSFC

Design Requirements

- Spacecraft Bus
 - Shuttle secondary payload as baseline
 - ◆150 lbs total weight (max.)
 - ◆NASA Hitchhiker requirements
 - Simple Design
 - ◆No propulsion
 - ◆No attitude control
 - Development and testing at NPS
 - Communications with NPS ground station
 - 2-Year mission life

Hitchhiker Ejectable Requirements

- Design Limit Loads (analysis alone)
 - Factor-of-safety of 2.0 times limit loads for yield
 - Factor-of-safety of 2.6 times limit loads for ultimate failure

LOAD VECTORS FOR PAYLOAD VERIFIED BY ANALYSIS ALONE Direction Limit Load (g's) Yield Load (g's) Ultimate Load (g's)			
± X, ±Y, ±Z	11.0	22.0	28.6
R_X, R_Y, R_Z	85	170	221

PANSAT
Expanded
View

PANSAT Block Diagram

Spacecraft Design

- Subsystems
 - Communications payload
 - **◆**Modem
 - ◆RF Section & Antennas
 - Digital control subsystem (DCS)
 - ◆Processor board
 - **◆**Temperature multiplexer
 - ◆Data storage modules (memory)
 - Electrical power subsystem (EPS)
 - Mechanical & Structure subsystem

Design Issues

- Hitchhiker Payload
 - Trade reliability for safety
 - Microswitches (3 single-points-of-failure in series)
 - ◆RF timer circuit
 - Trade capability for safety
 - Ensure compatibility of materials
 - ◆Low out-gassing materials
 - ◆Fracture-resistant structural materials

PANSAT Testing

- Subsystem environmental test at NPS
 - Random vibration
 - Thermal-vacuum cycling
- System-level vibration at NASA/GSFC
 - Random vibe each axis
 - Vibration level: 8.2 grms
- Functional testing

PANSAT Testing

- Mass properties test
 - C.G. location determination
 - Within 1/16 inch of analytical
 - Moments of inertia on two axes

Payload Safety

- Familiarize with Hitchhiker Customer

 Accommodations and Requirements Specification

 (CARS) and other documents
- Design to remove safety hazards
 - Removal of hazard
 - Inhibits (including payload operations)
- PANSAT safety issues
 - Batteries
 - Radio frequency (RF) emissions
 - Structure

PANSAT Battery

- Compliant with Manned Space Vehicle Battery Safety Handbook, (NASA/JSC)
- Battery construction
 - Teflon-coated interior of housing
 - Glass wool packing
 - Dry Nitrogen purge of housing
 - PRV in line with sub-micron filter
 - Thermal cutouts

PANSAT Battery

- Fully discharged at integration
- Microswitches inhibit charging "dead in the can"

Safety Inhibits

- Microswitches applicable prior to ejection
 - Non-operational while in canister
 - (2) series-connected on power leg of solar panel power bus
 - (1) in-line on the ground leg of solar panel power bus
- 15-second timer added for post-separation
 - Inhibits transmission
 - Enabled after safe distance from orbiter

Structure Subsystem

- Al-6061-T6
- Finite Element Analysis (FEA) verified through modal test
- High margins of safety
 - Structural strength
 - Low-risk classification for fracture
- Spacecraft weight not a problem

Load-Bearing Structure

Lessons Learned

- Learn by doing: Hands-on experience invaluable in educational process
- Design with safety in mind
- Design to test: *see paper by J. Horning*
 - Recycle test setups
 - Recycle test procedures
- Emphasize rigorous testing at subsystem level

Satellite Performance

Mr. Daniel Sakoda, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

Satellite Performance

- Telemetry data
 - Solar panel currents (8)
 - Battery status (temperature, on-line, charge, etc.)
 - Spacecraft temperatures
- On-orbit operations
 - RF state reset
 - Telemetry processing
 - Determination of software updates

Aug. '99 Solar Eclipse

Aug. '99 Solar Eclipse

For more information . . .

http://www.sp.nps.navy.mil/pansat